New algorithms to compute the nearness symmetric solution of the matrix equation
نویسندگان
چکیده
In this paper we consider the nearness symmetric solution of the matrix equation AXB = C to a given matrix [Formula: see text] in the sense of the Frobenius norm. By discussing equivalent form of the considered problem, we derive some necessary and sufficient conditions for the matrix [Formula: see text] is a solution of the considered problem. Based on the idea of the alternating variable minimization with multiplier method, we propose two iterative methods to compute the solution of the considered problem, and analyze the global convergence results of the proposed algorithms. Numerical results illustrate the proposed methods are more effective than the existing two methods proposed in Peng et al. (Appl Math Comput 160:763-777, 2005) and Peng (Int J Comput Math 87: 1820-1830, 2010).
منابع مشابه
On the numerical solution of generalized Sylvester matrix equations
The global FOM and GMRES algorithms are among the effective methods to solve Sylvester matrix equations. In this paper, we study these algorithms in the case that the coefficient matrices are real symmetric (real symmetric positive definite) and extract two CG-type algorithms for solving generalized Sylvester matrix equations. The proposed methods are iterative projection metho...
متن کاملTwo iterative algorithms to compute the bisymmetric solution of the matrix equation
In this paper, two matrix iterative methods are presented to solve the matrix equation A1X1B1 + A2X2B2 + ... + AlXlBl = C the minimum residual problem ‖ ∑l i=1 AiX̂iBi− C‖F = minXi∈BRni×ni‖ ∑l i=1 AiXiBi−C‖F and the matrix nearness problem [X̂1, X̂2, ..., X̂l] = min[X1,X2,...,Xl]∈SE ‖[X1, X2, ..., Xl] − [X̃1, X̃2, ..., X̃l]‖F , where BRni×ni is the set of bisymmetric matrices, and SE is the solution s...
متن کاملWZ factorization via Abay-Broyden-Spedicato algorithms
Classes of Abaffy-Broyden-Spedicato (ABS) methods have been introduced for solving linear systems of equations. The algorithms are powerful methods for developing matrix factorizations and many fundamental numerical linear algebra processes. Here, we show how to apply the ABS algorithms to devise algorithms to compute the WZ and ZW factorizations of a nonsingular matrix as well as...
متن کاملGlobal least squares solution of matrix equation $sum_{j=1}^s A_jX_jB_j = E$
In this paper, an iterative method is proposed for solving matrix equation $sum_{j=1}^s A_jX_jB_j = E$. This method is based on the global least squares (GL-LSQR) method for solving the linear system of equations with the multiple right hand sides. For applying the GL-LSQR algorithm to solve the above matrix equation, a new linear operator, its adjoint and a new inner product are dened. It is p...
متن کامل